Why Program?

Why Program?
Why Program?
CONCEPT

Computers can do many different jobs because they are programmable. 

EXPLANATION

Every profession has tools that make its job easier to do. Carpenters use hammers, saws, and measuring tapes. Mechanics use wrenches, screwdrivers, and ratchets. Electronics technicians use probes, scopes, and meters. Some tools are unique and can be categorized as belonging to a single profession. For example, surgeons have certain tools that are designed specifically for surgical operations. Those tools probably aren’t used by anyone other than surgeons. There are some tools, however, that are used in several professions. Screwdrivers, for instance, are used by mechanics, carpenters, and many others.

The computer is a tool that is used by so many professions, it cannot be easily categorized. It can perform so many different jobs that it is perhaps the most versatile tool ever made. For the accountant, computers balance books, analyze profits and losses, and prepare tax reports. For the factory worker, computers control manufacturing machines and track production. For the mechanic, computers analyze the various systems in an automobile and pinpoint hard-to-find problems.

 What makes the computer so useful? Quite simply, the computer can do such a wide variety of tasks because it can be programmed. It is a machine specifically designed to follow instructions.

Because of the computer’s programmability, it doesn’t belong to any single profession. Computers are designed to do whatever job their programs, or software, tell them to do. Computer programmers do a very important job. They create software that transforms computers into the specialized tools of many trades. Without programmers, the users of computers would have no software, and without software, computers would not be able to do anything.

Computer programming is both an art and a science. It is an art because every aspect of a program should be designed with care and judgment. Listed below are a few of the things that must be designed for any real-world computer program:
• The logical flow of the instructions
• The mathematical procedures
• The appearance of the screens
• The way information is presented to the user
• The program’s “user-friendliness”
• Manuals and other forms of written documentation
There is also a scientific, or engineering side to programming. Because programs rarely work right the first time they are written, a lot of experimentation, correction, and redesigning is required. This demands patience and persistence of the programmer. Writing software demands discipline as well. Programmers must learn special languages like C++ because computers do not understand English or other human languages. Languages such as C++ have strict rules that must be carefully followed.
Both the artistic and scientific nature of programming makes writing computer software like designing a car. Both cars and programs should be functional, efficient, powerful, easy to use, and pleasing to look at.
Oldest